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Fig.1 Illustration of the PNG process



I. Polynuclear Growth (PNG)

The Model: Sizeless islands nucleate uniformly in space and

time with rate γ. Islands grow laterally in the radial direction

with constant velocity v. Coalescence of islands results in a

larger island. The joint perimeter keeps growing in the original

radial direction. Set γ = v = 1, without loss of generality.

Applications (2D): Polymer lammellar crystallization

Equivalent to (1D): Kink-Antikink gas in overdamped sine-

gordon equation. Kinks (Antikinks) correspond to up (down)

step edges, i.e., h(x, t)→ dh(x, t)/dx. Island growth equivalent

to ballistic kink motion. Island coalescence corresponds to Kink-

Antikink annihilation.

Equilibrium properties are known (1D):

— Fluctuations in surface hight scale with system size as ∼ L1/2

— Surface growth velocity: veq =
√
2

nonequilibrium (infinite system) properties unknown



The uncovered fraction

Sj(t) = the exposed fraction of the jth layer at time t. Many

properties follow directly:

The surface hight, h(t) ∼ vt

h(t) = 〈j〉 =
∞
∑

j=1
j [Sj+1(t)− Sj(t)] .

The surface width, w(t) ∼ tβ

w2(t) = 〈j2〉 − 〈j〉2 =
∞
∑

j=1
j2 [Sj+1(t)− Sj(t)]− h2(t)

Wave-like asymptotic form

Sj(t) = F





j − vt

tβ





Extremal properties

F (z) ∼


















1− exp(−zσ+) z →∞;

exp(−|z|σ−) z → −∞.

Large coverage follows a Fisher tail, σ+ = 1
1−β



The gap density

fj(x, t) = the density of inter-island gaps (voids) of length x on

the jth layer. Gives

The uncovered fraction

Sj(t) =
∫ ∞
0

dx x fj(x, t)

The island density

Nj(t) =
∫ ∞
0

dx fj(x, t)

Master equation

∂fj(x, t)

∂t
= 2

∂fj(x, t)

∂x
+ γj(t)[− xfj(x, t) + 2

∫ ∞
x

dyfj(y, t)]

first term - gap shrinkage due to surface growth

next two terms - changes due to nucleation.

γj(t) = nucleation rate at the jth layer

implies correct rate equation, Ṡj(t) = −2Nj(t)

Island density rate equation

Ṅj(t) = −2fj(0, t) + γj(t)Sj(t)



II. Mean-Field Theory (MFT)

Compare with exact island density rate equation

Ṅj(t) = −2fj(0, t) + Sj(t)− Sj−1(t)

To comply with this equation, the nucleation rate must be

γj(t) = 1 − Sj−1

Sj

Formal solution for gap density, gj(t) =
∫ t
0 dτ γj(τ )

fj(x, t) = g2
j (t) exp

[

−gj(t)x− 2
∫ t

0
dτgj(τ )

]

Uncovered fraction obeys second order nonlinear ODE

d2

dt2
lnSj = −2





1− Sj−1

Sj





 = −2γj

self consistent nucleation rate



Traveling wave solution
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Fig.2 The uncovered fraction Sj(t) vs. time for layers j = 20, 40, 60, and 80.

The coverage follows a traveling wave solution, Sj(t) = F (j −

vt). For j À vt, 1− F (x) ∼ exp(−αx) with

v2 = 2
eα − 1

α2

As α > 0 all velocities in the range [vmin,∞) are possible. How-

ever, the minimal possible velocity is selected and v = vmin =

1.75735. This agrees to 0.1% with the numerics!

minimal stable velocity is selected



Extremal Properties of Coverage

F (z) ∼


















1− exp(−αz) z →∞;

exp(−z2) z → −∞.

Generalization to higher dimensions

Higher order rate equation

dd+1

dtd+1
lnSj = −d!Ωd





1− Sj−1

Sj





 Ωd = πd/2/Γ(1 + d/2)

Again, a traveling wave form for Sj(t). All qualitative properties

are similar to 1D including asymptotically flat surface, β = 0

Minimal velocity selected

vd+1 = d!Ωd
eα − 1

αd+1

asymptotically smooth surface predicted



III. Linear Recursion Relation (LRR) approach

Uses known Kolmogorov coverage in first layer, S1(t) [2]

Sj+1(t) = Sj(t)−
∫ t

0
dτ S1(t− τ )

dSj(τ )

dτ

Reduces to diffusion equation

∂S

∂t
= D

∂2S

∂z2
z = j − vt

Growth velocity

vd =





Ωd

d + 1





1
d+1

/Γ





d + 2

d + 1



 .

Symmetric wave form, Erfc(z) = 2√
π

∫∞
z du e−u

2

Sj(t) =
1

2
Erfc(−x) x =

j − vdt√
4Dt

diffusive growth of width β = 1/2



IV. Monte Carlo simulations
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Fig.3 Uncovered fraction Sj(t) versus t for j = 1, 2, 3, 4

MFT gives an improved approximation

MFT and LRR provide lower and upper bounds
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Fig.4 Long time behavior of the width. Early behavior is linear and late behavior is t1/3.

1D PNG is in KPZ universality class [5]



Summary

MFT PNG LRR

v1 1.75735 1.41± 0.01 1.12838

β 0 1/3 1/2

σ+ 1 3/2 2

σ− 2 ≥ 2 2

Table 1: Characteristics of the three approaches for the one-dimensional PNG model.

Conclusions

• MFT provides better approximation for coverage

• MFT improves for higher dimensions

• MFT and LRR provide upper and lower bounds
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